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ABSTRACT 

In simulating trajectory estimation problems, a 
rapid procedure is desirable for generating random 
sample-covariance matrices based on large numbers of 
observations. By using existing random-number gen­
erators, an* economical method is developed that yields 
a matrix S whose elements have the same joint dis­

tribution as the elements of the sample-covariance 

matrix S. 
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THE GENEFiATION OF A RANDOM SAMPLE-COVARIANCE MATRIX 


By Alan H. Feiveson 

Manned Spacecraft Center 


SUMMARY 


Trajectory estimation simulation problems make desirable a rapid procedure 

for generating random sample-covariance matrices based on large numbers of ob­

servations. This paper first presents an algorithm for such a procedure and 

then shows its derivation from the Cochran-Fisher Theorem concerning quadratic 

forms. Finally, an example is given. 


INTRODUCTION 


In trajectory analysis, the "best" estimate of the state is a function of 
the covariance matrices R. associated with the observation stations. For 
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practical use, estimates must be substituted for the unknown exact In
Ri. 

some cases, estimating the 
 Ri directly from the observations may be desirable. 


The well-known "best", or unbiased-maximum-likelihood-based (u.m.1 .b.) , 
estimator of a covariance matrix Ri is given by 

n 


n - 1s = -x (xi - .)(Xi - XT) 
i=1 


where the Xi are the observation vectors and n is the sample size. To sim­


ulate a procedure where u.m.1.b. estimates are used, random matrices must be 

generated that have the same distribution as these estimates. 


* 
The obvious method of generating a matrix S , having the same distri­

bution as S, is to generate the n observation vectors (Xi; i = 1,... nt 
But if each vector Xi has p components, generating n observation vectors 


necessitates generating at least np ;andom numbers. 




* 
This paper presents an alternate method of generating S which requires 

using on ly  p(p + 1)/2 random numbers - usually a much smaller quantity than 
nP* 


* * * 
A, A , B, B , C, R, W, S, S 

Ai 

bij 


* 
ij 


CT 


i, j, k 

N j 7  Nij 

n 
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Qi 
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SYMBOLS 


matrices 


matrices in Cochran's Theorem 


ijth element of B 


* 
ijth element of B 


transpose of the matrix C 


identity matrix 


indices of summation 


normally distributed with mean @ and 
covariance matrix R 

standardized normal random variates 


sample size 


size of covariance matrix (number of 

variables in one observation) 


j-1 


matrix equal to I - % 
k = l  

matrix equal to y. J;,r1Ty. y.y 


jth row of matrix w 


transpose of r .
J 
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T 
tk t ranspose  of tk 

V random va r i ab le
j 

w . .  i j t h  element of w
1 J  

X 1 	x ( n  - 1) random vec tor  i n  
Cochran's Theorem 

jth of a set  of orthogonal 1 x ( n  - 1) 
vec to r s  

t ranspose  of y . 
J 

'k' tk p x 1 vectors  

chi-square with n - j degrees  of freedom 

V. 	 rank of Ai 
1 

PI p x 1 null vector  

N i s  d i s t r i b u t e d  as 

METHOD 

Let  S = A/(. - 1) be t h e  u.m.1.b. es t imator  of a p x p covariance 
mat r ix  R from an independent normally d i s t r i b u t e d  sample of s i z e  n .  It 
can be shown (ref. 1) t h a t  

n-1 
A = c z  z T 

k k  
k = l  

where t h e  p x 1 vec to r s  {zk; k = 1, 2 ,  ... n - 1) a r e  independent and 

normally d i s t r i b u t e d  w i t h  zero mean and covariance mat r ix  R .  
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Since R i s  a covariance mat r ix ,  it i s  semiposi t ive d e f i n i t e .  Therefore ,  
a ma t r ix  C exists such t h a t  

CCT = R ( 3 )  

It fo l lows  t h a t  t h e  vec tor  zk can be  w r i t t e n  

zk = C t k  (4) 

where 

Let  n-1 

k= l  

Then, 

n-1 

CBCT = cx t k t k T C T  = A 

k = l  

* 
Generat ion of A 

* 
Let  A be  a generated ma t r ix  whose elements have t h e  same j o i n t  d i s t r i ­* 

bu t ion  as those  of A. To ob ta in  S = A*I( n  - l), it i s  necessary only t o* 
genera te  a matrix B whose elements a r e  d i s t r i b u t e d  as t h e  elements of B.  

Then, A* i s  computed so t h a t  

A * * T= C B C  (7) 
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* 
Hence, t h e  problem i s  reduced t o* genera t ing  t h e  random symmetric mat r ix  B . 
An algori thm f o r  genera t ing  B i s  given below. For a j u s t i f i c a t i o n  of t h i s  
procedure,  r e f e r  t o  t h e  Analysis .  

* 
Generation of B 

1. Generate p independent X2 v a r i a b l e s  v j = 1,.. . p ,  having n - j
j ’

degrees  of freedom. One method of ob ta in ing  v .  i s  t o  generate  a s tandard 
J 

normal 	v a r i a t e  N and s u b s t i t u t e  it into t h e  Wilson-Hilfer ty  x2 approximation
j

( r e f .  2 ) .  The approximation can be w r i t t e n  

2 .  Generate p ( p  - 1 ) / 2  independent s tandard normal v a r i a t e s  N, ., i < ,j ,
LJ 

and j = 1, 2 ,  . . . p .  

3. 	 Form t h e  diagonal  elements of B * ( b * . . ,  j = 1, . . .  p )  as fo l lows:  
J J  

* 
l3 11 = v1 


b*J J  J. .  = v. + E Nij2( j  > 1) 

i=1 

* 4 .  Form t h e  off-di.agonal elements of B as fol lows:  

i-1 

* 
Once B has been generated,  A* fol lows from equat ion ( ‘ 7 ) .  
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ANALYSIS 


Using t h e  no ta t ion  of t h e  Method sec t ion  and not ing  t h a t  by jo in ing  t h e  
vec tors  tk and k = 1, 2,  . . .  n - 1 as columns, a p x (n-1) mat r ix  W 

where r i s  t h e  jth 1 x ( n  - 1) row vec tor  of W .  Thus, t h e  i j th e l e ­
j Tment of B, bij,  i s  equal  t o  r . r  .

1 j  

By us ing  the  Schmidt or thogonal iza t ion  process ,  a s e t  of  or thogonal  

{’j7 
j = l , 2 , .  . . p \  can be genera ted  wherevec tors  

T T
Y j  = r j  - r j Y 1  ... 

= r . (  1 - Q~ - Q~ - ... Q ~ - ~ 
J 

= r iQ 
J 

j-1 

where Qi = yi &k and I i s  t h e  ( n  - 1) x ( n  - 1) 

(8) 


k = l  
i d e n t i t y  mat r ix .  

The mat r ices  Q, Q1, ... Qjml have t h e  fol lowing s i g n i f i c a n t  p r o p e r t i e s :  

1. Q1,Q2, Qj-1 have a rank of one. 

2 .  Q.Q. = 0 for i # j .
1 J  

3 - Q, Q,, Qj-1 a r e  symmetric idempotents. 

4. Q has rank n - j .  
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Proof 

1. The vector 
yi 

clearly spans the entire range space of Q
i '  

T T
Yi Y.Y. Y1 J  j = 0 because y.y = 0 for i # j. 

* *  'i'j = (YiYiTJ(YjYjTJ l j  

3. Clearly Qi is symmetric. To show idempotence, 


m 

Y; ( YiYJ Yi Yi
I
Yi 

-QiQi - Qi 
YiYiT) 1 YiYi') YiYi

T 

and 


+ 

= I - [I Q~ + ... Q,j+l )  = Q 

4. This follows from elementary theorems on idempotent matrices ( r e f .  3 ) .  
Consider the following form of the Cochran-Fisher Tlieorem. 

T11eorem 

If
- x is a 1 x (n - 1) random vector distributed N (@, I), and if 

xxT = 2 xAixT the rank of the sum of the A. ' s  equalling the sum of tk e 
i=1 1 


Tranks of the separate A.'s is a necessary and sufficient condition f o r  xAix-~ 1 


to be distributed as central x2 with v
- i degrees of freedom l-where vi -is 

the rank of Ai I , and f o r  xAlx T, xA2xT, . . . %xT to be jointly independent 
(ref. 4). 
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Note t ha t  t h e  inne r  product  r r can be  w r i t t e n
j j  

j -1 

= r.Qr
j + C rj%rjT (9)

J 
k = l  

Equation (9) s a t i s f i e s  t h e  condi t ion  of t h e  Theorem where t h e  mat r ices  
Q, Q1,. - -Qj-1 p l a y  t h e  r o l e  of t h e  Ai. It t h e r e f o r e  fo l lows  t h a t  

Tr .Qr  = rjQQr j  = r . Q  (rjQ)T= y j y j  T -X 2 ( n  - j )
~j J 

Since t h e  y a r e  mutual ly  orthogonal and normally d i s t r i b u t e d ,  t h e  q u a n t i t i e s  
T 

y j y j  , ( j  = 1, 2, ... p ) ,  a r e  mutual ly  independent.  They can be generated 

independent ly  using random v a r i a b l e s  v
j '  

having t h e  X2 d i s t r i b u t i o n  wi th  

n - j degrees  of freedom. 

Once t h e  s e t  i s  given, t h e  q u a n t i t i e s  

m 

be ing  normalized l i n e a r  combinations of N(0,l) v a r i a t e s ,  a r e  themselves,  
N(0,l) v a r i a t e s .  

Since a l l  t h e  elements of t h e  mat r ix  W a r e  mutual ly  independent,  cs i j  

i s  independent of 5
i ' j '  

f o r  j # j l ,  i < j ,  i ' <  j ' .  Furthermore, as a 

consequence of t h e  Theorem, it i s  known t h a t  f o r  i # i t ,  cs i j  i s  independent 
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of (5i ’ j ’  Therefore? t h e  p ( p  + 1)/2 q u a n t i t i e s ,  yjyjT and o5 j  ( j  = 1, p;  

i < j ) ,  can be generated independent ly? using t h e  X 2  random va r i ab le  v f o r  
j 

y y and s tandard ized  normal v a r i a t e s  Nijy for ui j ’j j  

* 
The diagonal  elements of B a r e  e a s i l y  computed from equat ion (9) .  Let 

* 
11 = v1 

i=1 

Since u 
i j  J YiYi T -- r j Y i  9 it  follows t h a t  

N i j  fi-,r j y i  T 

From equat ion (7)  f o r  i < j , 

r 

- b j i  - (NliNlj + N2iN2j + ... N i - l i N i - l j  
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.45 -.21 

when R is given t o  be [-.: ::] 

* * 
Therefore ,  b = b . can be generated by

Ji 

Y 

b''ij = Nij fi 
i-1


* -
ij - N~~ + C N ~ ~ N ~ ~ ( ~- 1). 

k=l 

Example 

* 
Consider t h e  genera t ion  of S based on 101 observa t ions  

.45 -.21 

when R is given t o  be [-.: ::: ::] 
-.3 0 

Then n = 101, p = 3, and c = .7 .1 

0 . 5  

It i s  necessary t o  genera te  o n l y  6 ( i n s t e a d  of 606) random numbers from an 
N(0,l) popula t ion .  They a re :  

N1 = -0.258 N12 = -0.585 

N2 = -0.882 N13 = 0.332 

N3 = 1.869 N23 = -0.110 
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I 44.449 -20.412 1.157 

43.638 5.869 
1.157 5.869 31.473 

The Wilson-Hilferty X2 approximation gives: 


2 + ~-(-0a238)fl 
(9)(100) w 

2 + (-0.882)fl1 = 86.492 
(9)(99) 


2 + 
(9)(98) 

Finally, the procedure given in the Method section yields 


* 
= 11 


* 
22 = 

=b*35 

* 
12 = 

=b*1.3 

=b*23 


Thus, 


96.027 


86.492 + (-0.585)*= 86.835 


125.769 + (0.332)2 + (-0.110)2= 125.891 


-0.585d- = -5.734 


0.3324-= 3.250 


-0.110d8-+ (-0.585)(0.332) = -1.216 


T * 
A * = C B C  

44.449 -20.412 1.157 


43.638 5.869 

1.157 5.869 31.473I 
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and 

0.444 -0.204 0.012
* 

S = A*/(n - 1) = 0.436 0* 059 
0.012 0.059 0 * 315I 

CONCLUDING REMARKS 

This  r e p o r t  has presented  an economical method of genera t ing  a p x p 
sample covariance mat r ix  based on n observa t ions .  The method r e q u i r e s  t h e  
genera t ion  of only p ( p  + 1)/2 random numbers in s t ead  of t h e  u s u a l l y  much 
l a r g e r  q u a n t i t y  np. The mat r ix  C r e f e r r e d  t o  i n  t h e  Method s e c t i o n  may be 
obtained by methods r e a d i l y  adaptab le  t o  computers. 

Manned Spacecraf t  Center 
Nat ional  Aeronaut ics  and Space Administration 

Houston, Texas, October 18,1965 
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